BIS (TRIMETHYLSILYL) AMIDE AS NITRILE PRECURSOR

Benoît Rigo*^a, Charles Lespagnol^b and Marc Pauly^c

a) Laboratoire de Synthèses Organiques, Ecole des Hautes Etudes Industrielles, 13 Rue de Toul, 59046 Lille, France.

b) Institut de Chimie Pharmaceutique, 3 rue du Professeur Laguesse, 59045 Lille, France.

c) Laboratoires Sérobiologiques, B.P. 670, 54010 Nancy, France.

<u>Abstract</u> : Bis (trimethylsilyl) amides are converted into nitriles with high yields when they are treated wich a catalyst (tetrabutylammonium fluoride, Lewis acids or iron phthalocyanine).

Since its discovery (1962)^{1,2}, the thermal decomposition of bis (trimethylsilyl) amides to nitriles has only be reported in two reviews^{3,4}, and has never been used as a preparative method for nitriles synthesis; recent reviews on silicon chemistry do not report this reaction⁵⁻⁸.

$R - C = NSI(CH_2)_2$	 $(CH_3)_3 SI = O = SI(CH_3)_3$	т	R—C≡N	1
1		•		aR = Me:12 h,215° 100%
OSI (CH ₃) ₃				$bR = Ph : 12 h, 200^{\circ} 948^{2}$
1	2		3	$c R = / 200^{\circ} 0^{10}$
				o N
				si(CH ₂)2

However this thermal reaction is not general and, for instance, compound <u>lc</u> remains inaltered under these conditions. In this paper we describe the catalytic decomposition of silylated amides :

Catalyst

Three different catalysts promote the decomposition of lb used as a model compound :

- Tetrabutylammonium fluoride, which is a very soluble form of fluoride ion, can be used in this reaction (20 h ; 15° ; 100%). Less soluble fluoride compounds do not promote the decomposition to nitrile at room temperature.

- True Lewis acids such as FeCl₃ (1 h, 15°, 100% ; 40 h, -70°, 50%), ZnCl₂ (10mn, 65°,100%) or AlCl₃ (2 h, 20°, 95%) are very efficients catalysts.

- Iron phthalocyanine, also catalyses this decomposition at 75° (6 h, 100%). This compound is of special interest because it is the first time that it has been used in siloxane elimination ; cobalt and fluorochromium phthalocyanines are unreactive at 90°.

Scope of the reaction (table I)

As evidenced in the table, this siloxane elimination is general and succeeds in every case, except when R is a strong withdrawing group. Another important feature is that the catalysts are complementary because they do have not the same sensitivity to the structure of the molecule : when iron trichloride is partly deactivated by a basic group, fluoride ions are not deactivated, and when fluoride cannot be used at room temperature, iron trichloride can be utilized.

	$R - C = NSI (CH_3)_3$ $OSI (CH_3)_3$		(CF	l₃)₃SIOSi(CH3)3 +	R (CEN
N°	R	Catalyst : n t(hour)	Bu ₄ N ⁺ E T°C	γield % ^b	Catalys T(hour)	st : Fe T°C	≥Cl ₃ ª Yield % ^b
1	с _{6^н5-}	20	15	100	1	15	100
2	2-Me ₃ SiOC ₆ H ₄ -	20	90	100 ^{c,d}	0.5	18	100
3	3-Py-	22	20	95	0.5	80	100 ^d
4	nC ₃ H ₇ -	17	19	95	1	19	95
5	CH3-e	3	20	75	0.5	20	100
6	Pyro-f	3	80	100	5	80	95
7	CF3-h	20	55	0	20	55	0

TABLE I. NITRILE SYNTHESIS BY ELIMINATION OF HEXAMETHYLDISILOXANE

^aDisilylamide : lg ; catalyst : 0.02g. ^bNMR yield. ^c83.3% of isolated yield of 2-cyanophenol, after distillation, methanol solvolyse and acticarbon treatment. ^dNo reaction at 20°. ^eAldrich. A minute amount (2%) of acetonitrile found in this commercial product is probably the result of this easy hexamethyldisiloxane elimination. ^f Compound <u>lc</u>.

This two-steps procedure for the dehydration of amides can be effected in one-step without isolation of the bis (trimethylsilyl) amide : for instance heating nicotinamide(6 g) with trimethylchlorosilane (7 ml), triethylamine (30 ml) and zinc chloride (0.6 g) give a triethylamine solution of bis (trimethylsilyl) derivative $\underline{1}$ (R=3-Py); when the solvent was evaporated and the residue distilled in-vacuo, nitrile $\underline{2}$ was obtained in 79% yield; in the same way, compound $\underline{3c}$ was obtained in 91% yield in a preparative scale¹⁰. Thus this method can be used as an alternative to other one-step procedures for the preparation of nitriles^{11,12}.

This work significantly extends the scope of nitrile synthesis using silyl amides : only a catalytic amount of an acidic (FeCl₃), basic (F^-) or neutral (PcFe) compound is necessary to promote this reaction, in contrast to the published decomposition reaction of a monosilylamide by an equimolar amount of an acidic reagent (acid chloride¹³ or thionyl chloride¹⁴).

REFERENCES

1.	W.Giessler, Ph. D. Thesis, Universität Köln (1962).
2.	C. Kruger, E.G. Rochow and U. Wannagat, Chem.Ber., 96, 2138 (1963).
з.	L. Birkofer and A. Ritter, Angew.Chem.Int.Ed.Engl., 4, 417 (1965).
4.	J.F. Klebe, in "Advances in Organic Chemistry", Vol.8, E.C. Taylor, ed., John Wiley and
	Sons, Inc., New York, NY., 1972, p.97.
5.	E.W. Colvin, <u>Chem.Soc.Rev.</u> , 7, 15 (1978).
6.	R. West and T.J. Barton, J.Chem.Ed., 57, 165 (1980) ; ibid., 57, 334 (1980).
7.	I. Fleming, <u>Chem.Soc.Rev.</u> , <u>16</u> , 83 (1981).
8.	E.W. Colvin, Silicon in Organic Synthesis, Butterworth and Co (Publishers), London 1981.
9.	J. Yamawaki and T. Ando, <u>Chem.Lett</u> ., 755 (1979).
10.	B. Rigo, C. Lespagnol and M. Pauly, J. Heterocyclic Chem., submitted for publication.
11.	Z. Grzonka, <u>Rocz.Chem.</u> , <u>47</u> , 1401 (1973).
12.	R. Appel, R. Kleinstück and K. Ziehn, Chem.Ber., 104, 1030 (1971).
13.	M.L. Hallensleben, Tetrahedron Lett., 20, 2057 (1972).
14.	G.Schwarz, H. Alberts and H.R. Kricheldorf, Liebigs Ann.Chem, 1257 (1981).

(Received in France 9 October 1985)